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The Systems Perspective

What is a system?

A subset of the world whose behavior, and whose int eraction
with the world, we believe can be sensibly describe  d.

* The experimenter can draw a boundary around it, heu ristically

» The experimenter can conduct defined perturbations within the
boundaries

* The experimenter can, by reasoning generate sensibl e
explanations for the changed behavior.

» Learning is assessed by how well the understanding enables
prediction of changed system behavior in response t o defined
perturbations.

Kuipers, B. 1994. MIT Press, Cambridge
Brent 2004, Nature Biotech. 22: 1211-1214

The Systems Perspective

Systems biology is the study of
an organism, viewed as an
integrated and interacting
network of genes, proteins and
biochemical reactions which
give rise to life.

« Systems are comprised of parts which interact.

« Interaction of these parts gives rise to "emergent properties".
« Emergent properties cannot be attributed to any sin gle parts of the system. Irreducible.

« To understand systems, and to be able to fully unde rstand a system's emergent properties,
systems need be studied as a whole.

http://www.systemsbiology.org/Intro_to_ISB_and_Systems_Biology/Why_Systems_Matter




The Systems Perspective

*Non-equilibrium thermodynamics (1930s-40s)

* dealt with integration quantitatively
« aimed to discover general principles >> descriptive
« established connection to molecular mechanisms

* Investigation of biological self-organization (1950  s)

* examination of how structures, oscillations, and/or waves arise in a steady or
homogenous environment

* Feedback regulation in metabolism (late 1950s)

¢ Systems theory in biology (1960s)

« “search for general biological laws governing behavior and evolution of living matter
in a way analogous to the relation of physical laws and non-living matter”

* Metabolic control analysis (1970s)
*Approaches to characterize properties of networks of interacting chemical reactions

» Convergence with “mainstream” molecular biology — hi gh
throughput, genome-scale, “data-rich”

Westerhoff and Palsson, 2004 Nature Biotech. 22:1249-1252
Wolkenhauer. 2001 Briefings in Bioinformatics. 2:258-270

Thé Systems Persp

—_

« Shift

« Should reduce complexity rather than adding additio nal layers
of complexity

» Search for organizing principles over construction of predictive
descriptions (models) that exactly describe the evo lution of a
system in space and time.

« ldentification of new concepts and hypotﬁ'éses. that provide a
conceptual structure with logical coh€rence to riva | chemistry
and physics. - 2 o

Mesarovie-et al. 2004. Syst. Biol. 1:19-27



The Systems Perspective in Ecotoxicology

« Shift from reductionism to a holistic perspective

« Historically, ecotoxicology and ecological risk
assessment was holistic in focus

* Apicallintegrative endpoints: Survival, growth,
reproduction % >
-~
* Reductionist in the
sense that testing of the
universe of chemicals
was the paradigm.

Forecast Population Trajectories

* Not feasible to test every chemical, let alone
every chemical mixture

* Increased emphasis on subtle, chronic
impacts (e.g., development, behavior, etc.) with
long-term population implications.

The Systems Perspective in Ecotoxicology

Search for organizing principles that underlie biol ogical
response to stressors.

Develop a conceptual structure with logical coheren ce that
allows us to predict, with reasonable and quantitat ive certainty,
integrated, ecologically-relevant impacts.




Linkage of Exposure and Effects Using Genomics,
Proteomics, and Metabolomics in Small Fish Models
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A Case Study with FRddioalze
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A Case Study with Fadrozole
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Evidence for
compensatory/feedback
response to fadrozole.
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FSHR gene expression
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« Under what conditions would compensation be success ful?
« Under what conditions does it fail to prevent adver se effect?

« Under what conditions does it contribute to or exac erbate the
initial impact of the stressor?
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A Case Study with FRddipatde
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CONCLUSIONS

< Consideration of interactions and relationships is at the heart of the
systems perspective. Systems models serve asacri tical translator
between initiating events (modeled by QSAR) and bio  logical outcome.

« Systems models need not be infinitely detailed. Re  solution required
defined by the questions to be answered.

« Toxicity pathways linking exposure to adverse effec t include the direct
effect of the chemical and a wide variety of indire ¢t secondary;,
tertiary....and potentially stochastic effects that in fluence the apical
outcome.

¢ Molecular and biochemical responses to stressors ar e both dose and
time-dependent, and best represented in three dimen  sions. Important
consideration for biomarker-based bioassay and high -throughput
screening.

CONCLUSIONS

* Modern “omics” tools facilitate unprecedented scale and detail in the
descriptive analysis of biological systems. The gr eater challenge is in
defining relationships and the general principles t hat govern them.

*Overall architecture of the systems or networks can reveal important
attributes related to function.

*Hypothesis driven and unsupervised analysis of biol ogical systems or
networks can reveal critical regulatory nodes that integrate signals and
drive component function or phenotype.

< The ultimate goal of systems ecotoxicology is disco very of
generalized or universal principles that govern bio logical responses to
stressors.
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