Predicting Estrogen Receptor Binding within Categories

Rick Kolanczyk

Environmental Protection Agency
Office of Research and Development
National Health and Environmental Effects Research Laboratory
Mid-Continent Ecology Division
Duluth, MN

Estrogen Receptor Toxicity Pathway

- Need is derived from Food Quality Protection Act "estrogens"
- Chemical binding to ER is known to cause adverse effects
 - Toxicity Pathway
- Diverse chemicals bind to ER
- Drug bioassays for ER binding are not relevant
 - drug-design assays optimized for high affinity binders
 - environmental hazard may come from low affinity binding

Development and use of a QSAR requires clear Problem Definition

- The purpose of the QSAR application must be well-defined (e.g., priority setting for testing, and chemical-specific risk assessment are two very different purposes)
- The chemicals of regulatory concern must be defined to develop a database of tested chemicals (training set) for QSAR development

EPA Office of Pesticide Programs: Food Use Inerts & Antimicrobials

- Get 'lists'
- Characterize structures
- Assess coverage of existing data (training sets, TrSets)
- Select chemicals for testing to strategically expand structure space to maximize information gained from every structure tested

Defining the Problem: EPA Office of Pesticide Programs Food Use Inerts List - Structures

List from OPP/RD included:

893 entries = 393 discrete chemicals + 500 non-discrete substances (44% discrete : 56% non-discrete)

393 discrete chemicals include:

366 organics (93%) 24 inorganics (6%)

3 organometallics (1%)

500 non-discrete substances include:

147 polymers of mixed chain length

170 mixtures

183 undefined substances

Defining the Problem: EPA Office of Pesticide Programs Antimicrobials/Sanitizers - Structures

Lists from OPP/AD included:

299 = 211 discrete chemicals + 88 non-discrete substances (71% discrete : 29% non-discrete)

211 discrete chemicals include:

153 organics (72%)
52 inorganics (25%)
6 organometallics-acyclic (3%)

88 non-discrete substances include:

25 polymers of mixed chain length 35 mixtures 28 undefined substances

In-lab Testing = Training Set

The Issue:

Assay protocols optimized to increase confidence in quantifying activity of low potency compounds

Compare EPA Office of Pesticide Programs chemical structures to existing ER data

The assays:

- 1) ER binding -
 - standard competitive binding assay optimized for low affinity binders
 - Rainbow trout liver cytosol (rtER)
- 2) Gene Activation
 - trout liver slice vitellogenin mRNA
 - Endogenous metabolism

Building a Decision Tree with Categories

Setting Priority for Further Testing: Food Use Inert and Antimicrobial Lists

Lower Priority if:

-Chemical belongs to a class where testing showed no evidence of ER interaction (RBA < 0.00001); -LogP <1.3, or meets other class specific LogP cutoffs

General characteristics of these chemicals:

- -Acyclic (e.g., no benzene rings)
- -Cyclic but does not contain a likely H-bonding group;

RBA = relative binding affinity; (a ratio of measured chemical affinity for the ER relative to 17-beta-Estradiol = 100%)
Log P = log of octanol/water partition coefficient (also known as Log Kow); is an indicator of lipophilicity

Setting Priority for Further Testing: Food Use Inert and Antimicrobial Lists

Higher Priority if:

- -Chemical belongs to class with evidence of ER interaction, and:
- -LogP > 1.3 (or other class-specific cutoffs)

General characteristics of these chemicals:

- -Contains at least one cycle (e.g., benzene ring);
- -Contains a possible H-bonding group;

Inactive Classes – Lower Priority Inactive Classes 122 Alkylbenzenesulfonic Acids 3 **Sulfonic Acid Dyes** Sorbitans **Monocyclic Hydrocarbons** 0 Cyclic caged Hydrocarbon **Pyrrolidines Furans N-chain Phenones** 0 **Oxazoles Triazines** Isothiazolines **Imidazolidines** Cyclic Inorganics **Fully-Hindered Alkylphenols** Cyclic Pentanones/Others Inactive ranges in Otherwise Cyclic Hexanones of LogP<1.5 Cyclic Hexanols of LogP<1.5 0 1 Chlorobenzenes of LogP<4 1 0 Inactives in Mixed Functional Grps/Heteratom Classes Mixed Phenols 1 **Mixed Organics** 13 **Organometallics** 0 1 **Total Inactives** 175

Active Classes Alkyl Phenols	<u>FI</u> 4	<u>AM</u> 9	
Parabens		ő	
Salicylates	3 1	o o	
Phthalates	3	Ö	
Actives in Mixed Function	nal /Heterato	m Classes	
Mixed Phenols	1	6	
Mixed Organics	1	0	
Total Positives	13	15	

Thiophosphate Esters (?) 1	3
Total Under Investigation 13 9	Ť
Total Olider Hivestigation 13 2	21

Summary of Current Findings Food Use Inert and Antimicrobial Lists						
Inventory Sta	tus – Septembo	er 20, 2007				
Food Use Inventory		Antimicrobials				
393	Total Chemicals	211				
367 (94%)	Lower Priority	175 (82%)				
13 (3%)	Higher Priority	15 (7%)				
13 (3%)	Under Investigation	21 (10%)				

Summary

- The decision support system has been coded to perform an automatic classification of discrete chemical inventories.
- Decision support system was designed to categorize chemicals with similar activity (ER binding potential) to determine common aspects of structure.
- Modifications to the decision tree are made as needed as new inventories are examined which contain new structure/activity classes

Acknowledgements

EPA Mid-Continent Ecology Divivsion-Duluth:

Pat Schmieder, Mark Tapper, Jeff Denny, Barb Sheedy, Mike Hornung, Hristo Aladjov

Student Services Contractors:

Carlie Peck, Beth Nelson, Tori Wehinger, Ben Johnson, Luke Toonen, Rebecca Maciewski, Will Backe, Melissa Dybvig, Megyn Mereness

International QSAR Foundation:

Gil Veith

EPA Office of Pesticide Programs:

Steve Bradbury, Jonathan Chen, Jean Holmes, Kerry Leifer, Betty Shackleford, Najim Shamim, Deborah Smegal, Pauline Wagner

OASIS software (Laboratory of Mathematical Chemistry):

Bourgas, Bulgaria - Ovanes Mekenyan

	CROUP	T-4-4	D'1	N N-d	T
Assessmen		Total 31	Binders 26	Non-binders 5	<u>Testina</u> 0
(+)	A B or A C Type Alkyl Anilines	9	8	1	0
(+)		5	5	0	0
(+)	Alkyl Phenols - Alkoxy	1	1	0	0
(+)	Alkyl Phenols - m-Branched				
(+)	Alkyl Phenols - o-Branched	2	2	0	0
(+)	Alkyl Phenols - p-Branched	8	8	0	0
(+)	Alkyl Phenols - Phenyl	4	4	0	0
(+)	Alkyl Phenols - p-nChain	10	10	0	0
(+)	Bensoates - ortho-CH3	2	1	0	1
(+)	DDT Like	9	9	0	0
(+)	Parabens - monohydroxy	8	8	0	0
(+)	Parabens - trihydroxy	2	1	0	1
(+)	Phenones - Branched	7	5	2	0
(+)	Phthalates	8	5	3	0
(+)	Salicylates	5	4	1	0
(+)	Tamoxifen Like	3	3	0	0
?	Alkyl Phenols - Hindered	2	1	1	0
?	Bensoates - para-CH3	1	Ó	0	1
?	Bensoates - tri-CH3	3	1	2	0
?	Cyclic Alcohols - hexyl	9	3	2	4
;	Cyclic Hydrocarbons - Multi	10	3	5	2
?	Cyclic Ketone - hexyl	6	3	2	ī
;	Halobenzenes	8	2	5	i
?	Mixed Organics	58	3	33	22
,	Mixed Urganics Mixed Phenols	16	4	33 8	4
,					5
	Organometallic	6	0	1	
?	Steroidal Backbone	9	3	6	0
?	Thiophosphate Esters	4	1	2	1
negative	Acetanilides	4	0	2	2
negative	Acyclic	26	0	23	3
negative	Alkyl Anilines - Alkoxy	4	0	2	2
negative	Alkyl Bensthiols	2	0	2	0
negative	Alkylbensenesulfonic acids	6	0	6	0
negative	Benzamide	2	0	2	0
negative	Bensoates - not subst	5	0	5	0
negative	Bis-Anilines	8	0	8	0
negative	Cyclic Alcohols - other	2	0	1	1
negative	Cyclic Hydrocarbons - Mono	4	0	4	0
negative	Cyclic Ketones - other	4	ō	4	ō
negative	Furans	3	ō	3	ō
negative	Imidasolidines	4	ő	4	ő
negative	Isothiazolines	2	ő	2	ő
negative	Oxazoles	2	ő	2	Ö
negative	Phenones - n-chain	3	0	3	0
negative	Pyrrolidiones	2	0	2	0
		2	0	2	0
negative	Sorbitans	9	0	9	0
negative	Sulfonic Acid Dyes				
negative	Triasines	4	0	4	0
	TOTALS	344	124	169	51